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The effects of randomly irregular bathymetry on the propagation of interfacial gravity
waves are studied. Modelling sea water by a two-layer fluid of different densities,
weakly nonlinear waves much longer than the sea depth but comparable to the
horizontal scale of bathymetry are treated by Boussinesq approximation and multiple-
scale analysis. For transient wave pulses, the governing equation for the pulse profile
is shown to be an integro-differential equation combining KdV and Burgers terms.
Quantitative and qualitative effect of disorder on the attenuation of wave amplitude,
reduction of wave speed and change of wave profile are examined numerically and
analytically based on the asymptotic approximation. For time-harmonic waves, mode-
coupling equations are derived and examined for the competition between diffusion
by random scattering, steepening by nonlinearity and frequency dispersion for a broad
range of depth ratios.

1. Introduction
The oceanographic importance of and the literature on the dynamics of internal

gravity waves have been reviewed by Miles (1980), Ostrovsky & Stepanyants (1989),
Akylas (1994) and Grimshaw (1997, 2002). Helfrich & Melville (2006) have given
a comprehensive survey of advances in theory as well as laboratory and field
observations. Among several key mechanisms vital to the dissipation process, a
full understanding of radiation damping appears still to be lacking.

For weakly nonlinear surface waves, an apparent damping mechanism by disorder
has been explored by Belzons, Guazzelli & Parodi (1988) and Devillard, Dunlop &
Souillard (1988), who refer to the spatial attenuation as localization because of
its common root of random multiple scattering with the Anderson localization in
solid-state physics. Unlike Bragg scattering by a periodically modulated seabed where
strong reflection occurs for a discrete set of frequencies satisfying the Bragg resonance
condition, spatial attenuation takes place at nearly all wave frequencies in disordered
media. For water of constant density, Kawahara (1976) first derived modifications to
the nonlinear Schrödinger equation for narrow-banded waves in water of finite depth
and to the Korteweg–de Vriès (KdV) equation for long pulses in shallow water, but
did not examine the physical consequences of disorder. For the case of finite depth,
Mei & Hancock (2003) examined the effects of one-dimensional disorder on the
linear and nonlinear regimes of side-band instability. Extensions to two-dimensional
disorder have been made by Pihl, Mei & Hancock (2002) with emphasis on the
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combined diffraction and localization of Stokes waves. For time-periodic long waves
in shallow water, Grataloup & Mei (2003) studied the effects of such radiation
damping on harmonic generation. For solitary pulses in shallow water, Mei & Li
(2004) derived an integro-differential equation similar to that of Kawahara which
combines features of both KdV and Burgers equations, and further examined various
physical ramifications of localization including the phenomenon of soliton fission
in a one-layered sea over a rough bed of finite extent. Theories for variable depth
have been reported by Nachbin & Papanicolaou (1992), Nachbin (1995) and Nachbin
& Solna (2003), for linear waves. For weak fluctuations and weakly nonlinear long
waves Rosales & Papanicolaou (1983) gave an asymptotic theory on the change of
phase speed by randomness.

Gas extraction from the North Sea is a current project in the new gas field of
Ormen Lange on the Norwegian continental shelf.† A 1200 km pipe line of 0.75 m
diameter is to be laid on the seabed connecting the processing plant in Nyhamna,
Norway to Easington, UK. The seabed can be as deep as 800 to 1100 m and is known
to be exceedingly rough with a typical height of 20 m and length of 200–1000 m. Since
the pipe line will be suspended between, and anchored at, the successive crests of the
undersea terrain, much of its length will be exposed to the dynamic forces of current
and waves. For safe design, the possible impact of long-period internal waves is of
engineering concern and motivates this study.

For interfacial waves in a two-layered sea, Chen & Liu (1996) have considered slowly
varying random depth where the bathymetric length scale is much longer than the
characteristic wavelength. Attention was focused on a special case where the depths
of the two layers are nearly the same so that KdV approximation must be modified
by including cubic nonlinearity. In this paper, we describe a theory of interfacial
waves in a two-layered sea with a different focus. Specifically the bathymetric length
is assumed to be the same order as the wavelength, and the ratio of layer depths is
in the broader range away from the special value where higher-order nonlinearity is
required. Under the usual assumption of small density difference, R = ρ ′/ρ ≈ 1, where
primes are used to distinguish quantities associated with the upper (lighter) layer from
those of the lower layer (unprimed), the rigid-lid approximation will be made from
the start so that the free-surface displacement is ignored. The Boussinesq assumption
is made so that nonlinearity and dispersion are both weak and comparable,

ε ≡ A

H ′ ∼ A

H
� 1, µ ≡ H ′

�
∼ H

�
∼ (kH ′, kH ) � 1 but ε = O(µ2), (1.1)

where � is the characteristic length of the bathymetric variations and k the
characteristic wavenumber. As in Grataloup & Mei (2003) and Mei & Li (2004)
we shall consider the fluctuations of depth h from its constant mean Ho to be weak
but slightly stronger than wave nonlinearity so that

h = Ho(1 + µb(x)), (1.2)

where b(x) is the dimensionless depth fluctuation. Extensions to slowly varying mean
depth is straightforward by ray approximation. An integro-differential equation of the
KdV–Burgers type will be derived. The evolution of solitons is first studied. Effects
on the harmonic generation in time-periodic waves will also be examined.

Since the derivation and some of the analysis follow closely our recent works cited
in the references, many details are omitted here.

† http://www.hydro.com/ormenlange/, http://en.wikipedia.org/wiki/Ormen-Lange.
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2. Boussinesq approximation for random bathymetry
From the linearized water-wave theory, it is well known that, under the rigid-lid

approximation the dispersion relation between the frequency ω and wavenumber k of
a sinusoidal wavetrain on the interface of two shallow layers of immiscible fluids is

ω2 = gk2(1 − R)
H ′H

H ′ + RH
, where kH ′, kH � 1, R ≡ ρ ′

ρ
. (2.1)

Guided by this dispersion relation, we first cite the Boussinesq approximate equations
for weakly nonlinear waves. Using overbars to denote physical variables, let us
introduce the following normalization:

x =
x̄

�
, z =

z̄

H ′ , t =
t̄

�

√
gH ′(1 − R), (2.2a−c)

h =
H

H ′ , η =
η̄

A
, (φ′, φ) =

H ′(φ̄′, φ̄)

A�
√

gH ′(1 − R)
. (2.2d−f )

where η denotes the interface displacement and (φ′, φ) are the velocity potentials
in the (upper, lower) layer. The normalization scale � for horizontal distances will
be specified later as a characteristic scale of bathymetry. Following the standard
procedure of Boussinesq approximation, the asymptotic equations of mass and
momentum conservation can be derived. Let the depth-averaged horizontal velocities
be defined by

u′(x, t) ≡ 1

1 − εη

∫ 1

εη

φ′
,x dz, u(x, t) ≡ 1

h + εη

∫ εη

−h

φ,x dz, (2.3)

where h(x) = H (x̄)/H ′ is the normalized still-water depth of the lower layer.
We assume that the still-water depth of the seabed fluctuates from the constant

mean ho

h = ho − µb(x), ho = Ho/H
′ = constant, (2.4)

where b(x) is random in x with zero mean: 〈b(x)〉 = 0 and is of order unity. Keeping
terms up to order O(ε) = O(µ2) only, we obtain from the laws of mass and momentum
conservation

−(1 − R)ηt + u′
,x = ε(ηu′),x, (2.5)

(1 − R)ηt + hou,x = µ(bu),x − ε(ηu),x, (2.6)

R(u′
,t + ηx) − (u,t + ηx) =

ε

1 − R
(uu,x − Ru′u′

,x) +
µ2

3

(
Ru′

,xxt − h2
ou,xxt

)
. (2.7)

Equation (2.7) combines the conservation of horizontal momentum in the upper layer
and pressure continuity at the interface. In the limit of R = 0 and ho = 1, the equations
reduce to those for a homogeneous layer of shallow water. These three equations can
be combined to give a single Boussinesq equation valid to the accuracy of O(ε, µ2):

ηtt − C2ηxx = − µ

(1 + Rho)2
(bηx),x − µ2R

(1 + Rho)3
(b2ηx),x

+
µ2

3

h2
o(R + ho)

(1 + Rho)2
η0,xxxx +

εho

2(1 − R)2(1 + Rho)
(u2 − Ru′2),xx

+
ε
(
1 − Rh2

o

)
2ho(1 + Rho)

(η2),t t +
ε
(
1 − Rh2

o

)
2(1 − R)2

(u2),t t , (2.8)
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where

C =

(
ho

1 + Rho

)1/2

(2.9)

is the dimensionless phase speed of the interfacial wave in the linearized limit. Since
b(x) is a random function of x, (2.8) is a nonlinear stochastic differential equation.
As a model of natural seas the density difference is small, i.e. 1 − R = (ρ − ρ ′)/ρ � 1
within a narrow range. The depth ratio ho is the key parameter characterizing the
interfacial waves.

As in the case of a homogeneous fluid (Grataloup & Mei 2003; Mei & Li 2004), the
accumulated effects of random scattering are expected to induce slow changes over
a long distance on the scale inversely proportional to the mean square of the depth
fluctuations. We therefore introduce the fast and slow coordinates x and X = µ2x,
and expand η, u and u′ as power series of µ. The following perturbation equations
are obtained at O(µ0), O(µ) and O(µ2):

η0,t t − C2η0,xx = 0, (2.10)

η1,t t − C2η1,xx = − 1

(1 + Rho)2
(bη0,x),x, (2.11)

η2,t t − C2η2,xx = − 1

(1 + Rho)2
(bη1,x),x + 2c2η0,xX +

1

3

h2
o (R + ho)

(1 + Rho)2
η0,xxxx

+
Urho

2(1 − R)2(1 + Rho)

(
u2

0 − Ru′
0
2)

,xx
+

Ur

(
1 − Rh2

o

)
2ho(1 + Rho)

(
η2

0

)
,t t

+ Ur

1 − Rh2
o

2(1 − R)2
(
u2

0

)
,t t

− R

(1 + Rho)3
(b2η0,x),x, (2.12)

where Ur = O(1) is Ursell’s number defined as the ratio of nonlinearity to dispersion:

Ur =
ε

µ2
=

A�2

H ′3 . (2.13)

We first treat long and transient pulses and then time-harmonic waves.

3. Unidirectional propagation of long pulses
At the zeroth-order, η0 is governed by the homogeneous wave equation, hence

it represents the coherent motion unaffected by randomness on the short scale. By
limiting to right-going waves, the formal solution is of the form

η0(x, X; t) = η0(σ, X) where σ = xCt (3.1)

is the coordinate moving with the linearized phase speed. At order µ, the equation
for η1 is an inhomogeneous wave equation and can be formally solved in terms of
Green’s function,

G(x, t; x ′, t ′) =
1

2c
H [C(t − t ′) − |x − x ′|], (3.2)

where H (z) is the Heaviside step function, with the result,

η1(x, X; t) =
1

(1 + Rho)2

∫ t

−∞
dt ′

∫ ∞

−∞
dx ′G(x, t; x ′, t ′)

∂

∂x ′

(
b(x ′)

∂η0(x
′ − Ct ′, X′)

∂x ′

)
.

(3.3)
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Clearly, η1 is a random function of zero mean because of b. When use is made of the
following results from the first-order approximation of (2.5) and (2.6),

u′
0(σ, X) = −C(1 − R)η0, u0(σ, X) = C(1 − R)

η0

ho

, (3.4)

we obtain from the ensemble average of the second-order equation,

〈η2〉,t t − C2 〈η2〉,xx = − 1

(1 + Rho)2
〈bη1,x〉,x

+ w1η0,xX + Urw2

(
η2

0

)
,t t

+ w3η0,xxxx − w4

(
〈b2〉η0,x

)
,x
, (3.5)

where

w1 =
2ho

(1 + Rho)
, w2 =

3

2ho

(
1 − Rh2

o

)
(1 + Rho)

, w3 =
1

3

h2
o(R + ho)

(1 + Rho)2
, w4 =

R

(1 + Rho)3
.

(3.6)

We now assume that the depth fluctuations are statistically homogeneous over the
short scale, with known autocorrelation

〈b(x), b(x ′)〉 ≡ Γ (ξ ) where ξ = x ′ − x. (3.7)

From now on, we denote η0 by ζ for brevity. The first term on the right-hand side of
(3.5) can be shown as in Mei & Li (2004) to be

〈bη1,x〉 = − 1

(1 + Rho)2

∫ ∞

−∞
dt ′

∫ ∞

−∞
dx ′

[
∂

∂x ′

(
〈b(x)b(x ′)〉 ∂ζ

∂x ′

)]
∂G

∂x

=
ho(1 + Rho)

π

∫ ∞

−∞
β(k, X)ζ̂ (k, X) eik(x−Ct) dk, (3.8)

where ζ̂ (k, X) is the exponential Fourier transform of ζ (σ, X) with respect to σ and

β =
ik

4Cho(1 + Rho)3

∫ ∞

−∞

∂

∂ξ
[Γ (ξ ) eikξ ] sgn(ξ ) eik|ξ | dξ (3.9)

is independent of σ . Since ζ,t = −Cζ,σ , ζ,x = ζ,σ , all terms on the right-hand side of
(3.5) are functions of σ . To ensure boundedness of 〈η2〉 the entire right-hand side
must vanish. This solvability condition for 〈η2〉 is a partial differential equation for
ζ , which can be integrated with respect to σ once to give

ζ,X + λ1ζ ζσ + λ2ζ,σσσ = λ3ζ,σ − 1

2π

∫ ∞

−∞
eikσβ(k, X)ζ̂ (k, X) dk, (3.10)

where

λ1 = 3
2
Ur

1 − Rh2
o

ho(1 + Rho)
, λ2 =

1

6

ho(R + ho)

(1 + Rho)
, λ3 =

Γ (0)

2

R

ho(1 + Rho)2
, (3.11)

and Γ (0) = 〈b2〉. Equation (3.10) is an extension of the KdV equation governing the
evolution of ζ in the moving coordinate σ . The variable X plays the role of time.
The coefficients λ1 and λ2 are the same as those in existing theories for interfacial
long waves over a flat bottom (see e.g. Helfrich, Melville & Miles 1984). In the limit
of R → 0 and ho =1, equation (23) of Mei & Li (2004) for a one-layered sea is
recovered. These coefficients are plotted in figure 1 for R = 0.97, Γ (0) = 1, Ur = 1 and
a wide range of ho. It is important to note that λ1 � 0 if ho � 1/

√
R. Since Γ (0) > 0,
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Figure 1. Variation of coefficients in (3.11) for R = 0.97, Γ (0) = 1 and Ur =1.

λ3 is positive; the first term on the right-hand side indicates that randomness reduces
the wave speed in the moving frame of reference.

The integral in (3.9) can be transformed to a more revealing form by partial
integration as in Mei & Li (2004),

β =
k2

4Cho(1 + Rho)3
{

1
2
Γ̂ (0) + 1

2
Γ̂ (2k) + ikP̂ (2k)

}
− ikΓ (0)

2Cho(1 + Rho)3
, (3.12)

where

P (ξ ) =

∫ ∞

|ξ |
Γ (ξ ) dξ, P̂ (2k) =

∫ ∞

−∞
P (ξ ) e−i2kξ dξ. (3.13)

Substituting (3.12) into (3.10), taking the inverse Fourier transform and invoking the
convolution theorem, we obtain the following governing equation

ζ,X + λ1ζ ζσ + λ2ζ,σσσ =
1

Cho(1 + Rho)3

{
Γ (0)

2
γ ζ,σ +

Γ̂ (0)

8
ζ,σσ

+
1

16

∫ ∞

−∞
Γ

(
σ − σ ′

2

)
ζ,σ ′σ ′ dσ ′ +

1

8

∫ ∞

−∞
P

(
σ − σ ′

2

)
ζ,σ ′σ ′σ ′ dσ ′

}
(3.14)

where

γ = 1 + RC(1 + Rho) > 0. (3.15)

Since Γ (0) > 0, the first term on the right-hand side shows that roughness reduces the
phase speed. The second and third terms represent diffusion by wave radiation. Note
that Γ and Γ̂ (0) which is the total area under the correlation curve, are both positive.
Hence randomness gives rise to diffusion. The last term alters the dispersiveness.
Thus, the governing integro-differential equation combines the features of KdV and
Burgers equations. In particular, the diffusion terms should lead to attenuation, i.e.
localization. Although (3.10) is of the same form as that for long waves in a one-
layered fluid (Mei & Li 2004), the coefficients now depend on the depth ratio ho which
affects the wave dynamics quantitatively. Moreover, the possibility of sign reversal of
λ1 (figure 1) leads to physical features unique to interfacial waves.

4. Soliton attenuation by Gaussian disorder
To examine greater details we take the correlation function to be Gaussian and

specify the horizontal scale � for normalization (cf. (2.2)) to be the correlation length.
Hence, in dimensionless form, the correlation function reads,

Γ (ξ ) = D2 exp(−ξ 2), (4.1)



Attenuation of long interfacial waves 79

where D is the normalized root-mean-square amplitude of disorder. The governing
equation becomes,

ζ,X + λ1ζ ζσ + λ2ζ,σσσ = D2 1

Cho(1 + Rho)3

{
γ

2
ζ,σ +

√
2π

8
ζ,σσ

+
1

16

∫ ∞

−∞
exp

(
−|σ − σ ′|2

8

)
ζ,σ ′σ ′ dσ ′ +

√
2π

16

∫ ∞

−∞
erfc

(
|σ − σ ′|

2
√

2

)
ζ,σ ′σ ′σ ′ dσ ′

}
. (4.2)

Let us examine the effects of roughness on the propagation of a soliton after
entering a semi-infinite region of disorder. For reference, the well-known interfacial
soliton over a smooth seabed (D = 0) may be first recalled,

ζ = sgn(λ1) sech2

⎡⎣√ |λ1|
12λ2

(
σ − λ2

3
X

)⎤⎦ , where sgn(λ1) = sgn
(
1 − Rh2

o

)
. (4.3)

The wave is an elevation if ho < 1/
√

R and a depression if ho > 1/
√

R. For R = 0.97
which is typical in oceans, the threshold is 1/

√
R =1.0153. The total area under the

wave of unit amplitude is 4
√

3λ2/|λ1| which is large for |λ1| � 1. Since λ2 > 0, the
soliton propagates forward in the moving frame of reference. The expression√

12λ2

|λ1| =

√
3

4

Ur

∣∣1 − Rh2
o

∣∣
ho(R + ho)

(4.4)

can be regarded as the dimensionless wavelength of the soliton. If ho � 1/
√

R, the
elevation soliton is short, hence the profile is sharp. As the depth ratio ho increases,
the length increases and the wave flattens. When ho = 1/

√
R, the length is infinite.

If ho increases above 1/
√

R, the depression soliton at first becomes shorter. After
reaching a minimum, the wavelength increases again with increasing ho. For a given
R, the minimum wavelength for the depression soliton can be found by extremizing
|λ1|/λ2 with respect to ho, yielding the cubic equation

Rh3
o − 3ho − 2R = 0. (4.5)

The critical depth h̃o corresponding to the minimum wavelength is the only positive
root of the cubic equation,

h̃o =
W

R
+

1

W
with W =

[(
R −

√
1 − R3

R

)
R2

]1/3

(4.6)

For R =0.97, we find h̃o =2.02.
With this background we first examine numerically a soliton entering from the left

of a semi-infinite region of disorder, i.e. D = 0, X < 0 and D = constant, 0 <X < ∞.
Equation (4.2) is solved by the Fourier spectral method for a domain of σ ,
centred around the initial soliton. Periodic boundary conditions are imposed. The
computational domain is sufficiently large to contain all disturbances. Integration in
X is performed by a fourth-order Runge–Kutta method.

4.1. Computed evolution of a soliton

Numerical solutions of (4.2) are obtained only for R = 0.97. Figure 2 compares the
effects of seabed roughness on the evolution of a relatively strong (Ur = 3) elevation
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Figure 2. Effect of roughness amplitude on soliton evolution over a random seabed in a
two-layer stratified fluid in the case of hump for R = 0.97 and ho =0.80. The total travel
distance is 200 (0 � X � 200). Wave profiles are shown at every �X = 20. Ur = 1. (a) D2 = 0,
(b) D2 = 0.1, (c) D2 = 0.25, (d) D2 = 0.5, (e) D2 = 1, (f ) D2 = 2.5.
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Figure 3. As for figure 2 but for ho = 1.2 and Ur =3.

soliton with a subcritical depth ratio ho = 0.8. For D =0 (smooth bed), the soliton
advances without changing its profile. For a larger D2, the crest becomes lower, the
profile flatter, and the speed is reduced. For the largest D2 = 1, the speed drops beneath
the linear phase speed. For a supercritical depth ratio ho = 1.2, similar comparisons
for a depression soliton are made in figure 3 for the same Ur = 3 and different D.
Again, for increasingly large D, the reduction of trough depth and the flattening of
profiles are more rapid. The reduction of propagation speed is also more pronounced.

We have also examined the transformation of a soliton passing over a long but
finite region of disorder (0 < X < X0) for several different roughness heights D. Over
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the rough region, the profile lowers and flattens with X, hence is no longer a soliton
upon exit. After re-entering the smooth region, the flat pulse undergoes fission into
several new solitons, as is expected from the inverse scattering theory. For both
elevation and depression solitons crossing a finite region of rough seabed, the number
of disintegrated new solitons increases by either increasing the roughness height D,
or the length X0. These features are qualitatively the same as those found for a
homogeneous layer by Mei & Li (2004), hence plots are omitted. The new feature
of interfacial waves is that the soliton can be either an elevation or a depression,
depending on the depth ratio.

Focusing on the case of semi-infinite disorder we now examine analytically the
asymptotic behaviour for large X, in particular the attenuation (localization) length,
along the lines of Mei & Li (2004).

4.2. Large X behaviour and the length of localization

It is physically expected that the reduction of crest (trough) amplitude with X must
be compensated by an increase in profile length for mass conservation. Hence, higher
derivatives of ζ suffer greater loss in magnitude. By comparing the diffusion and
dispersion terms with the inertia term in (4.2), we expect that ζ,σσσ /ζ ζ,σ diminishes
with increasingly large X while ζ,σσ /ζ ζ,σ remains comparable. The third term on the
right-hand side of (4.2) can be approximated by

1

16

∫ ∞

−∞
exp

(
−|σ − σ ′|2

8

)
ζ,σ ′σ ′ dσ ′ ≈ 1

16
ζ,σσ

∫ ∞

−∞
exp

(
−σ ′2

8

)
dσ ′ =

√
2π

8
ζ,σσ . (4.7)

Consequently, the asymptotic form of (4.2) for X � 1 reduces to

ζ,X + λ1ζ ζ,σ =
D2

Cho(1 + Rho)3

(
γ

2
ζ,σ +

√
2π

4
ζ,σσ

)
(4.8)

which can be transformed to the Burgers equation:

ζ,X + λ1ζ ζ,ρ =
D2

√
2π

4Cho(1 + Rho)3
ζ,ρρ (4.9)

after changing to a new coordinate moving at a lower speed than the linearized phase
velocity,

ρ = σ +

(
D2γ

2Cho(1 + Rho)3

)
X. (4.10)

We now use the analytical solution to an initial-value problem by Cole and Hopf
(see Whitham 1974) for the initial data of a concentrated pulse represented by the
δ-function. Let us choose the total area of the pulse to be the same as that of a soliton
of unit amplitude, i.e.

ζ (ρ, 0) = sgn(λ1)4

√
3λ2

|λ1|δ(ρ). (4.11)

The Cole–Hopf theory gives for large X,

ζ ≈ sign(λ1)

√
ν

X
F(ρ) (X � 1), (4.12)
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where

F(ρ) =
N√

π

exp(−ρ2)

1 + (N/2) erfcρ
, (4.13)

with

ρ =
ρ

2|λ1|
√

νX
, N = exp

(
2

|λ1|ν

√
3λ2

|λ1|

)
− 1, ν =

D2
√

2π

4Cho(1 + Rho)3λ
2
1

. (4.14)

Clearly, the wave (elevation or depression) advances in the moving coordinate σ at
the negative speed D2/2Cho(1 + Rho)

3. In the stationary frame of reference, the wave
speed is less than that of the linearized wave over a smooth bed. For large D2, i.e.
strong disorder,

N ≈ 2

|λ1|ν

√
3λ2

|λ1| � 1, (4.15)

the Cole–Hopf result (4.12) can be further approximated by

ζ ≈ sgn(λ1)

√
12λ2

πνX|λ1|3 exp(ρ̄2). (4.16)

The profile is Gaussian hence symmetric and the amplitude decays as X−1/2. The
algebraic rate of decay is a feature of nonlinearity, similar to what was found by
Devillard & Souillard (1986) for a nonlinear Schrödinger equation with a random
potential. This is different from linear waves which decay exponentially with the
propagation distance.

4.3. Small mean-square height

Similar to the damping of solitary waves due to weak viscous dissipation in the
boundary layer at the bottom (Keulegan 1949; see also Mei, Stiassnie & Yue 2005),
analytical approximation is possible for small mean square height D2 � O(1). Since
the attenuation rate is expected to be slow, we introduce an additional slow variable
X1 = D2X and expand ζ as a power series of D2 which is characteristic of the mean-
square height. The perturbation analysis is similar to that in Mei & Li (2004) for a
homogeneous layer, and is sketched in Appendix A. The final result is an ordinary
differential equation for the soliton amplitude A(X1)

∂A

∂X1

= −
√

2π|λ1|
90λ2Cho(1 + Rho)3

A2 − 1

16
√

3Cho(1 + Rho)3

√
|λ1|
λ2

A3/2F

⎛⎝√
2|λ1|
3λ2

A1/2

⎞⎠ ,

(4.17)

where

F (u) = 2

∫ ∞

0

dp sech2p

∫ ∞

0

(3 sech4q − 2 sech2q)

× (exp−((q − p)2/u2) + exp (−(q + p)2/u2)) dq. (4.18)

The function F (u) has been computed by Mei & Li (2004). Qualitatively, F (u)
increases from 0 when u = 0 to about 0.53 near u = 1. Then F (u) decreases
monotonically with increasing u. We have integrated (4.17) numerically for A(X1)
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Figure 4. Decay of A(X1) according to (4.17) for different depth ratios and Ur = 1. The
numbers on curves are the depth ratios ho.
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Figure 5. Behaviour of coefficient Q for small mean-square height, Ur = 1.

for different depth ratios (figure 4). Generally A(X1) decays with X1. For ho < 1/
√

R,
the decay rate increases with ho. However for ho > 1/

√
R, the decay rate decreases to

a minimum at about ho = 1.4 then increases again with ho.
To understand the last result better we approximate F (u) for large X1, hence small

A and u. The second integral in (4.18) is then dominated by contributions near q =p,
hence F (u) can be approximated by

F (u) ≈ 2

∫ ∞

0

sech4p(3 sech2p − 2) dp

∫ ∞

−∞
exp(−ξ 2/u2) dξ =

8
√

π

15
u. (4.19)

Now (4.17) can be approximated by

∂A

∂X1

= −
√

2π

45Cho(1 + Rho)3
|λ1|
λ2

A2. (4.20)

Therefore for large X1, A decays again algebraically

A(X1) =
A0

1 +

√
2πlA0

45Cho(1 + Rho)3
|λ1|
λ2

X1

≈ 45Cho(1 + Rho)
3

√
2π

λ2

|λ1|
1

X1

≡ Q

X1

. (4.21)

The dependence of the coefficient Q on the depth ratio is given in figure 5. This
approximation is poor near the threshold where |λ1| or ho =1/

√
R where Q is

singular. For ho < 1/
√

R, Q is small and rises with ho slowly except near ho ∼ 1.
Localization occurs at a relatively short distance. At the same X, A is larger for larger
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Figure 6. Localization length by approximate formulae for R = 0.97, ho = 2, Ur = 1. —, (4.25)
for D2 = O(1); - - -, (4.26) for large D2; − · −, (4.27) for small D2. ◦, results by spectral
computation of (3.14).

ho. Between the critical depth and ho ≈ 1.4, Q decreases with ho hence at the same X,
A decreases with ho. Beyond ho ≈ 1.4, Q, hence A, increases with ho again.

4.4. Localization length

Let us define the localization (or attenuation) length as the distance over which the
height of the soliton decreases to a certain small fraction of its initial height. Here
the fraction is arbitrarily chosen to be 1/10, i.e.

A(X = Lloc) =
1

10
A(X = 0). (4.22)

For finite disorder D2 = O(1), we first locate the crest from (4.12)√
ν

X
max(F) =

1

10
. (4.23)

The zero of dF/dX occurs at the root ρ ′
0 of the following transcendental equation

ρ ′
0(2 + N erfcρ ′

0) =
N

π
exp

(
−ρ ′2

0

)
. (4.24)

Upon substituting this result into (4.13) we find max (F ) = 2ρ ′
0, therefore

Lloc ≈ 400 ν ρ ′2
0 for D2 = O(1). (4.25)

For large D2, a more explicit result can be obtained from (4.16):

Lloc ≈ 1200λ2

πν|λ1|3 for D2 � 1. (4.26)

On the other hand, for small D2, we obtain from (4.21) for a unit initial height,

Lloc =
450Cho(1 + Rho)

3

√
2πD2

λ2

|λ1| for D2 � 1. (4.27)

Figure 6 shows the dependence of the localization length Lloc as a function of disorder
D2 for ho = 2 only, according to the three approximations above. Results by direct
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Figure 7. Localization length for various depth ratios based on (4.25). —, ho < 1/
√

R and ho

increases from bottom to top with steps �ho = 0.1; - - -, ho > 1/
√

R and ho increases from top
to bottom. R = 0.97.

numerical computations of (3.14) confirm the approximations in their respective
domains. Of course (4.25) has the widest scope of validity, and is therefore used to
calculate the effect of the depth ratio ho on the localization length, as displayed in
figure 7. It can be seen that the localization length is very large for ho ≈ 1/

√
R where

the nonlinear term is very small. For more accurate prediction, the extended KdV
approximation with a cubic nonlinearity is required.

5. Localization and harmonic generation
We now turn to the physics of harmonic generation, a phenomenon of well-known

importance in optics (Armstrong et al. 1962). It is also known that, in surface waves,
if progressive long waves of single frequency are generated in shallow water over a
smooth bed, higher harmonics emerge with the distance of propagation, followed by
spatially periodic exchanges of energy between higher and lower harmonics (Goda
1967; Mei & Ünlüata 1972; Bryant 1973). The effects of a randomly rough bed on
harmonic generation in a homogeneous layer have been investigated by Grataloup &
Mei (2003). Their theory is extended here for a two-layered fluid.

5.1. Coupled-mode equations for harmonics

Consider a train of progressive waves propagating from X = 0 towards X ∼ ∞. The
train is composed of many harmonics with amplitudes Am(X), frequencies ωm, and
wavenumbers km, with m = 1, 2 . . . ,

η0 =
1

2

∞∑
m=−∞

Am(X) exp(iθm), X > 0 where θm = kmx − ωmt, (5.1)

is the wave phase, with

km = mk, ωm = mω = Ckm (5.2)

and A−m = A∗
m where A∗ denotes the complex conjugate of A. The harmonic

amplitudes vary slowly in X =µ2x because of nonlinear interactions and random
scattering. By proper definition of the mean depth, we set A0 = 0.
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To find the solution to the governing equation (2.11) for η1, we expand the right-
hand side in time harmonics

(bη0,x),x =

∞∑
m=−∞

Fm exp(−iωmt) (5.3)

where

Fm = 1
2
ikmAm(X)[b(x) exp(ikmx)],x (5.4)

is a random function of x. We seek a solution of (2.11) in the form

η1 =

∞∑
m=−∞

η
(m)
1 exp(−iωmt), η

(0)
1 = 0; (5.5)

where ηm can be solved by a Green’s function method

η
(m)
1 =

Am(X)

4ho(1 + Rho)

∫ ∞

−∞
exp(ikm|x − x ′|) d

dx ′ [b(x ′) exp(ikmx ′)] dx ′. (5.6)

so that

η1 =
1

4ho(1 + Rho)

∞∑
m=−∞

Am(X)

× exp(−iωmt)

∫ ∞

−∞
exp(ikm|x − x ′|) d

dx ′ [b(x ′) exp(ikmx ′)] dx ′. (5.7)

We next turn to the governing equation for 〈η2〉, which is still (3.5). Using η0 and η1

derived in this section, the forcing terms on the right-hand side are worked out in
Appendix B. As a consequence, (3.5) becomes

〈η2〉,t t − C2 〈η2〉,xx =
1

(1 + Rho)2

∞∑
m=1

ikmAm(X)βm exp(iθm) +
w1

2

∞∑
m=1

ikm

dAm

dX
exp(iθm)

− Urw2

4

∞∑
m=1

ω2
mexp(iθm)

[ ∞∑
l=1

2A∗
l Am+l +

[m/2]∑
l=1

εlAlAm−l

]

+
w3

2

∞∑
m=1

k4
mAm exp(iθm) +

w4

2

∞∑
m=1

k2
mAm exp(iθm) + ∗. (5.8)

Because θm = km(x − Ct), then exp(iθm) is a homogeneous solution of the forced
wave equation. All harmonic coefficients on the right-hand side must vanish to avoid
secularity. It follows that

dAm

dX
+ β†

mAm(X) − λ2ik
3
mAm + λ3ikmAm

+
Cλ1

2
iωm

[ ∞∑
l=1

2A∗
l Am+l +

[m/2]∑
l=1

εlAlAm−l

]
= 0 (m = 1, 2, 3, · · ·). (5.9)

where

β†
m =

Im

h2
o(1 + Rho)2

(5.10)
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Figure 8. Real (dash line) and imaginary (solid line) parts of β
†
m/D2 for various depth ratios

ho from 0.6 to 2 at the interval �ho = 0.2.

with

Im ≡ D2

4
ikm

∫ ∞

−∞
sgn(ξ )

(
dΓ

dξ
+ ikmΓ

)
exp(ikm(|ξ | + ξ )) dξ (5.11)

depending only on X. Equation (5.9) is an infinite set of mode-coupling equations
for the harmonic envelopes. This result is an extension of the theory of Armstrong
et al. (1962) on second-harmonic generation in optics and of Bryant (1976) for long
water waves, both for homogeneous and uniform media, and of Grataloup & Mei
(2003) for long waves in a homogeneous fluid over a random seabed. The linear
terms multiplied by the coefficients β†

m represent the effects of incoherent scattering.
These equations can be solved numerically for given initial data Am(0), m = 1, 2, 3, ... .
Dependences of coefficients λ2, λ3 and Cλ1 on ho are shown in figure 1. Again let us
take the correlation function to be Gaussian according to (4.1). The integral above
can be evaluated to give

Im = D2

{
k2

m

√
2π

8

(
1 + exp

(
−2k2

m

))
− i

km

2

(
1 − km

√
π

2
√

2
exp

(
−2k2

m

)
erfi(

√
2km)

)}
,

(5.12)

as in Grataloup & Mei for a homogeneous layer. From (5.9), the following energy
relation can easily be shown:

d

dX

∞∑
m=1

|Am|2 = −2

∞∑
m=1

Re(β†
m)|Am|2. (5.13)

The fact that Reβ†
m is always positive implies energy dissipation and amplitude

localization of all interfacial harmonics. Figure 8 shows the dependence of the real
and imaginary parts of β†

m on the depth ratio ho and the normalized wavenumber km.
Clearly, the damping rate increases with the wavenumber km and decreases with the
depth ratio ho. The physical effect of the nonlinear products in the square brackets of
(5.9) is to enable energy exchange between modes and is reflected in slow oscillations of
modal amplitudes over X. This modulational wavelength, i.e. the recurrence distance,
decreases with increasing depth ratio through the phase speed C in λ1.



88 M.-R. Alam and C. C. Mei

5.2. Energy budget of incoherent scattering

Before presenting the numerical solutions of (5.9), it is useful to examine more closely
the physics of energy removal from the coherent wave by incoherent scattering.
Since the effect is represented by linear terms in (5.9) and is not the direct result of
nonlinear coupling, it suffices to consider just one harmonic, say the fundamental,
from the linearized part of the preceding theory. Let us rewrite the total interface
displacement as the sum of the ensemble mean 〈η〉 and the random fluctuation η̃,

η = 〈η〉 + µη̃. (5.14)

Clearly, they are related to the perturbation solutions by

〈η〉 ∼= η0 + µ2〈η2〉 + · · ·, η̃ = η1 + · · · (5.15)

to the present degree of accuracy. The following solutions for the fundamental
harmonic are just the first harmonic parts of (5.1) and (5.6),

η0 = Aeikx, η1 =
A

4ho(1 + Rho)

∫ ∞

−∞
eik|x−x ′ | d

dx ′ [b(x ′) eikx ′
] dx ′. (5.16)

Without the artifice of fast and slow coordinates, we substitute (5.14) into (2.8) with
only the linear terms kept, then take the ensemble average to obtain

〈η〉,xx + k2〈η〉 =
µ2

ho(1 + Rho)
〈bη1,x〉,x

+
µ2R

ho(1 + Rho)2
〈b2〉η0,xx − µ2

3

ho(R + ho)

(1 + Rho)
η0,xxxx, (5.17)

which reduces to

〈η〉,xx + K2〈η〉 = µ2α1〈bη1,x〉,x (5.18)

where

α1 =
1

ho(1 + Rho)
, K2 = k2 +

µ2k4ho(R + ho)

3(1 + Rho)
+

µ2Rk2Γ (0)

ho(1 + Rho)2
. (5.19)

Applying Green’s formula to 〈η〉 and its complex conjugate 〈η∗〉 over a large region
of disorder of L = O(1/µ2k), we obtain∫ L

0

dx[〈η〉∗(〈η〉,xx + K2〈η〉) − 〈η〉(〈η〉∗
,xx + K2〈η〉∗)] = [〈η〉∗〈η〉x − 〈η〉〈η〉∗

x]
L
0 . (5.20)

If both sides are multiplied by −i, the right-hand side of (5.20) can be written as

2Re[〈η〉∗(−i〈η〉x)]
L
0 ≈ 2Re[η∗

0(−iη0,x)]
L
0 + O(µ2), (5.21)

which is, except for the constant factor ρg2/ω, the net power out-flux of the leading-
order coherent wave through the ends. By using (5.18), the left-hand side of (5.20)
is

µ2

∫ L

0

dx[〈η〉∗(−iα1〈bη1,x〉)x + 〈η〉(−iα1〈bη1,x〉)∗
x]≈2µ2Re

∫ L

0

dx η∗
0(−iα1〈bη1,x〉)x.

Since µb(x) is the random fluctuation of depth and −iµη1,x in the integrand on
the right-hand side is the induced random fluctuation of the horizontal velocity,
−iµ2〈bη1,x〉 represents the averaged adjustment of volume flux. Thus, the last integral
above is the rate of pressure-working by the coherent pressure through the fluctuating
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flux over the region of disorder. Since the total extent is very large L =O(1/kµ2), the
integral above is of the same order as (5.21). It follows that, to leading order,

Re[η∗
0(−iη0,x)]

L
0 = µ2Re

∫ L

0

dx η∗
0(−iα1〈bη1,x〉)x, (5.22)

which means that the coherent motion loses energy by making a random adjustment
of velocity in response to random fluctuations of the seabed. As an analogy, a horse
running on a rough road must slow down by having to spend energy to make small
and random adjustments of its speed. Equation (5.22) can be further confirmed by
explicit calculation. To the leading order, we can use the first harmonic results (5.16)
derived in Appendix B to obtain

η0 = A exp(iKx) = A0 exp(−µ2β†
r x) exp(iκx), (5.23)

where (β†
r ) = Re(β†

1 ) and κ = K − µ2 Imβ
†
1 ). Hence, the left-hand side of (5.22) is

κ |A(0)|2 exp(−2µ2β†
r x)

]L

0
= −κ |A(0)|2[1 − exp(−2µ2β†

r L)] < 0. (5.24)

From (B 4) we have

〈bη1,x〉 = −2βA(0) exp(−µ2β†
r x) exp(iκx)

= −2β†[ho(1 + Rho)]A(0) exp(−µ2β†
r x) exp(iκx), (5.25)

therefore the right-hand side of (5.22) is, to the leading order

−2µ2β†
r κ |A(0)|2

∫ L

0

dx exp(−2µ2β†
r x) = −κ |A(0)|2[1 − exp(−2µ2β†

r L)] < 0, (5.26)

which is indeed equal to (5.24).

5.3. Numerical results

We present below numerical results computed for the initial condition that only the
first harmonic has non-zero energy at X = 0, i.e. A1(0) = 1, Am(0) = 0, m = 2, 3, 4, . . . .
For reference, we first show in figure 9 the evolution of interfacial harmonics on a
smooth seabed with D = 0 for fixed R = 0.97 and Ur = 3 and various depth ratios.
It can be seen that as long as ho �= 1/

√
R, energy exchange between harmonics

is strong. Near the threshold, nonlinearity is weak; energy transfer is practically
only in one direction from the first to higher harmonics. For subcritical depths,
the modulational distance decreases with increasing ho (deeper lower layer). For a
relatively weak disorder with D = 0.4, envelope harmonics are shown in figure 10
for several subcritical and supercritical depths. Energy exchange among harmonics
is modified by significant localization by disorder in all cases. For a strong disorder
with D = 1, figure 11 shows that all harmonics are heavily attenuated. Attenuation is,
of course, more rapid for shallower lower layers (smaller ho). Harmonic generation
by nonlinear interaction can be overwhelmed by radiation damping from random
scattering.

6. Concluding remarks
We have investigated the effects of seabed roughness on the propagation of weakly

nonlinear interfacial waves of wavelength much greater than the sea depth, but
comparable to the horizontal scale of depth variation. The slow attenuation of a
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Figure 9. Harmonic generation for interfacial waves when there is no disorder (D =0)
for depth ratios ho = 0.2, 0.4, 0.6, 0.8, 1.2, 1.5, 2 and 3. Other input parameters are k1 = 1,
R = 0.97, Ur = 3. Curves from top down represent first, second, third, . . . harmonics.
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Figure 10. Evolution of harmonics over a semi-infinite range of weak disorder (D =0.4).
Other values as for figure 9.
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Figure 11. Evolution of harmonics over a semi-infinite range of strong disorder (D = 1).
Other values as for figure 9.
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transient solitary pulse and periodic waves passing over a long region of disorder is
examined. Emphasis is on the case where wave nonlinearity ε = kA and dispersion
µ2 = H ′2/�2 are of the same order and the seabed roughness height is slightly
greater and of the order of µH . A broad range of depth ratio not close to the
critical value, H/H ′ =

√
ρ ′/ρ, is examined. The localization of a transient pulse is

shown to be governed by an integro-differential equation generalizing both KdV and
Burgers equations. Localization is studied by both analytical approximations and
numerical computations of the generalized equation. For time-harmonic waves, the
mode-coupling equations are derived with new damping terms representing effects of
disorder, for various depth ratios.

For the small neighbourhood of the threshold depth ratio H/H ′ =
√

ρ ′/ρ, the
remedy is, in principles to extend the KdV approximation with additional nonlinear
terms of higher order, as in the theory for a smooth bed (see e.g. Helfrich, Melville &
Miles (1984). In recent theories of two-layered fluids at constant depth, more accurate
equations accounting for strong nonlinearity have been proposed as the basis of
numerical computations (Choi & Camassa 1999; Ostrovsky & Grue 2003). In the
present theory for weak nonlinearity and dispersion, weak disorder modifies the KdV
equation or the mode-coupling equations by linear diffusive and dispersive terms. It is
likely that, even for strongly nonlinear interfacial waves, the effects of weak disorder
would still be represented by similar linear terms. The quantitative consequences are
worthy of further studies.

We acknowledge the financial support of US Office of Naval Research (Grant
N00014-04-1-0077, Ocean Technology Program). We thank Professor John Grue,
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Appendix A. Perturbation analysis for small roughness
Introducing the multi-scale expansion ζ = ζ (0)(X, X1, σ )+D2ζ (1)(X, X1, σ )+ . . . into

(4.2), the following perturbation equations are obtained

ζ
(0)
,X + λ1ζ

(0)ζ (0)
σ + λ2ζ

(0)
,σσσ = 0, (A 1)

ζ
(1)
,X + λ1ζ

(0)ζ (1)
σ + λ1ζ

(1)ζ (0)
σ + λ2ζ

(1)
,σσσ = −ζ

(0)
,X1

+
1

Cho(1 + Rho)3

{
γ

2
ζ (0)
,σ +

√
2π

8
ζ (0)
,σσ

+
1

16

∫ ∞

−∞
exp

(
−|σ − σ ′|2

8

)
ζ

(0)
,σ ′σ ′ dσ ′ +

√
2π

16

∫ ∞

−∞
erfc

(
|σ − σ ′|

2
√

2

)
ζ

(0)
,σ ′σ ′σ ′ dσ ′

}
. (A 2)

Denoting σ † = σ − UX, equations (A 1) and (A 2) are transformed to two adjoint
equations

∂

∂σ †

{
−U +

[
1
2

1

]
λ1ζ

(0) + λ2

∂2

∂σ †2

}[
ζ (0)

ζ (1)

]
=

[
0

r.h.s.(A 2)

]
. (A 3)

The solution for ζ (0) is the classical internal soliton given by (4.3) with U = λ2/3,
multiplied by the amplitude A(X1). The solvability condition of the problem for ζ (1)

can be obtained by applying Green’s identity to the two adjoint equations above,
yielding,
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−∞
dσ ζ (0) r.h.s.(A 2) =

∫ ∞

−∞
dσ ζ (0)

{
−ζ

(0)
,X1

+
1

Cho(1 + Rho)3

[
γ

2
ζ (0)
,σ +

√
2π

8
ζ (0)
,σσ

+
1

16

∫ ∞

−∞
exp

(
−|σ − σ ′|2

8

)
ζ

(0)
,σ ′σ ′ dσ ′ +

√
2π

16

∫ ∞

−∞
erfc

(
|σ − σ ′|

2
√

2

)
ζ

(0)
,σ ′σ ′σ ′dσ ′

]}
. (A 4)

Inside the curly brackets, the second and fifth terms do not contribute to the integral
because of their oddness in σ . We obtain by partial integration

−1

2

∂

∂X1

∫ ∞

−∞
ζ (0)2 dσ −

√
2π

8Cho(1 + Rho)3

∫ ∞

−∞

(
∂ζ (0)

∂σ

)2

dσ

+
1

16Cho(1 + Rho)3

∫ ∞

−∞
dσ ζ (0)

∫ ∞

−∞

∂2ζ (0)

∂σ ′2 exp(−(σ − σ ′)2/8) dσ ′ = 0. (A 5)

After using the soliton solution for ζ (0), we obtain the amplitude evolution
equation (4.17).

Appendix B. Second-order forcing terms for the harmonic generation problem
Referring to the right-hand side of (3.5), the mth harmonic of the first forcing term

is 〈
bη

(m)
1,x

〉
=

〈
b ikmsgn(x − x ′)η(m)

1

〉
= ikm

Am(X)

4ho(1 + Rho)

×
∫ ∞

−∞
sgn(x − x ′) exp(ikm|x − x ′|) d

dx ′ [〈b(x)b(x ′)〉 exp(ikmx ′)] dx ′. (B 1)

Assuming again spatial homogeneity of the depth disorder over the short scale as in
(3.7), it then follows that〈

bη
(m)
1,x

〉
= − ikm

Am(X)D2

4ho(1 + R)
exp(ikmx)

∫ ∞

−∞
sgn(ξ ) exp(ikm|ξ |) d

dξ
[Γ (ξ ) exp(ikmξ )] dξ.

(B 2)

Since 〈
bη

(−m)
1,x

〉
=

〈
bη

(m)
1,x

〉∗
, (B 3)

where f ∗ denotes the complex conjugate of f , we have

− ∂

∂x

[ ∞∑
m=−∞

exp(−iωmt)
〈
bη

(m)
1,x

〉]
=

∞∑
m=1

ikmAm(X)βmexp(iθm) + c.c. (B 4)

where

βm =
Im

ho(1 + Rho)
, (B 5)

with

Im ≡ D2

4
ikm

∫ ∞

−∞
sign(ξ )

(
dΓ

dξ
+ ikmΓ

)
exp(ikm(|ξ | + ξ )) dξ (B 6)
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depends only on X. The nonlinear forcing term in (3.5) can be transformed to

w2

(
η2

0

)
,t t

= −w2

4

∞∑
m=1

ω2
m exp(iθm)

[ ∞∑
l=1

2A∗
l Am+l +

[m/2]∑
l=1

εlAlAm−l

]
+ ∗, (B 7)

where [m/2] is the integer part of m/2, and εl is the Jacobi symbol equal to unity for
l = [m/2] and equal to two for l = 2, 3, 4, . . . otherwise. Further details can be found
in Grataloup & Mei (2003). The last two forcing terms in (3.5) are

w3η0,xxxx − w4Γ (0)η0,xx =
w3

2

∞∑
m=1

k4
mAm exp(iθm) +

w4

2

∞∑
m=1

k2
mAm exp(iθm) + c.c (B 8)
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